THE ¹³C NMR SPECTRA OF SOME ENT-18-HYDROXYKAUR-16-ENES

ANTONIO G. GONZALEZ,* BRAULIO M. FRAGA,* MELCHOR G. HERNANDEZ* and JAMES R. HANSON†

*Instituto de Productos Naturales Organicos, C.S.I.C., La Laguna, Tenerife, Spain; †School of Molecular Sciences, University of Sussex, Brighton, U.K.

(Received 20 May 1980)

Key Word Index—Diterpenoids; candol B; epicandicandiol; foliol; ¹³C NMR.

Abstract — The ¹³C NMR spectra are reported for thirteen *ent*-18-hydroxykaur-16-enes and their value for determining the C-4 stereochemistry is discussed.

The ¹³C NMR spectra of a number of kauranoid diterpenoids have been assigned [1,2] and the results have been applied in structural work. Although 19-oxygenation is probably the most common feature of the tetracyclic diterpenoids, a significant number of compounds occur, particularly in *Sideritis* (Labiatae) species [3–5], with a C-18 oxygen function. In the past the distinction between 18- and 19-oxygenation has involved, *inter alia*, ¹H NMR methods [6]. In connection with studies on microbiological transformations, we have assigned the ¹³C NMR spectra of a group of 18-hydroxylated kauranoid diterpenes [7]. The results, which are given in Table 1, provide a useful distinction between these oxygenation patterns.

The resonances were assigned by conventional noise-decoupled and SFORD techniques and by comparison with the previous assignments [1]. Some 3-hydroxylated derivatives were included in the series since an oxygen function at this centre is both common and likely to affect the C-18 and C-19 resonances.

As expected the C-4 resonance is deshielded whilst the equatorial C-18 CH_2OH signal is at lower field than the axial C-19 CH_2OH (71.8 ppm vs 65.4 ppm). However the position may be modified by the presence of other substituents such as a C-3 hydroxyl group. The γ -gauche shielding effect of substituents has been used for stereochemical assignments on a cyclohexane ring [8]. The position of the resonances for C-3, C-5, C-18 and C-19

Table 1	¹³ C NMR spectral	cionale of an	18 hydroxykaur	16 anac in m	nm from TMS
Table I.	TO NIMIK Spectral	i signais oi <i>eni</i>	-18-nvaroxykaur	-10-enes in c	om irom Livis

Carbon atom*	1	2	3	4	5	6†	7	8	9	10+	11	12	13
1	41.3	39.9	39.9	40.5	38.6	39.0	39.5	39.6	39.9‡	39.0	39.0	37.8	37.5‡
2	18.7	18.0	17.4	18.3	26.8	18.6	17.6	17.8	28.2	28.1	28.0	23.0	22.9
3	42.0	35.3	35.9	35.6	76.3	36.1	35.5	35.3	78.1	74.0	71.5	73.8	73.7
4	33.3	37.6	36.5	38.7	41.9	37.6	36.1	37.1	39.4	39.3	39.0	40.3	40.7
5	56.1	49.3	50.2	56.8	49.7	40.4	41.7	40.5	55.4	42.1	41.9	39.6	42.1
6	20.3	20.0	20.2	20.5	20.1	28.2	24.8	27.4	20.4	27.6	27.7	24.2	37.9‡
7	40.4	39.9	39.9	41.6	39.8	76.6	79.3	77.0	39.1	76.5	76.0	79.2	213.8
8	44.2	44.2	44.1	44.2	44.0	49.0	46.8	48.1	44.2	48.7	48.8	46.7	56.8
9	56.1	56.0	56.0	56.2	55.9	50.8	51.2	50.4	55.9	50.6	50.7	50.9	55.5
10	39.3	39.2	39.2	39.2	39.0	39.3	38.9	39.0	39.4	39.0	39.0	38.6	38.5
11	18.1	18.2	18.2	18.2	18.3	18.1	17.6	17.8	18.5	18.2	18.2	17.7	17.8
12	33.3	33.3	33.3	33.2	33.2	34.0	33.2	33.6	33.4	33.9	33.9	33.2	32.4
13	44.2	44.0	44.0	44.0	44.0	44.4	43.6	43.7	44.3	44.2	44.3	43.5	44.9
14	39.9	40.9	40.8	39.7	40.9	40.4	38.2	38.2	41.4‡	38.8	38.5	38.1	36.3
15	49.2	49.3	49.2	49.1	49.1	46.4	45.1	45.2	49.3	46.1	46.2	44.9	42.2
16	156.0	155.8	155.6	155.8	155.6	156.2	154.1	155.1	155.9	155.9	156.0	153.9	153.7
17	102.8	103.0	103.0	103.0	103.1	103.4	103.7	103.4	103.5	193.4	103.4	103.9	104.9
18	33.7	72.1	73.1	27.1	71.5	71.8	72.4	56.5	28.9	68.7	66.0	64.8	64.5
19	21.7	17.5‡	17.9	65.4	11.5	17.8	17.3	18.9	16.4	12.8	12.9	12.8	12.5
20	17.6	18.2‡	18.0	18.5	18.2	18.1	17.8	17.8	17.8	18.2	18.2	18.0	16.8

^{*} Acetates: 20.8-21.1 and 170.3-171.1 ppm.

[†] In pyridine-d₅.

[‡]These assignments may be interchanged.

Short Reports 847

R² 18
$$\frac{1}{19}$$
 R³

1 R¹ = R² = R³ = R⁴ = H

2 R¹ = R³ = R⁴ = H, R² = OH

3 R¹ = R³ = R⁴ = H, R² = OAc

4 R¹ = R² = R⁴ = H, R³ = OH

5 R¹ = R² = OH, R³ = R⁴ = H

6 R¹ = R³ = H, R² = R⁴ = OH

7 R¹ = R³ = H, R² = R⁴ = OAc

8 R¹ = R³ = H, R² = CI, R⁴ = OH

9 R¹ = OH, R² = R³ = R⁴ = H

10 R¹ = R² = R⁴ = OH, R³ = H

11 R¹ = R⁴ = OH, R² = OAc, R³ = H

12 $R^1 = R^2 = R^4 = OAc, R^3 = H$

13 $R^1 = R^2 = OAc$, $R^3 = H$, $R^4 = =O$

clearly shows the γ -gauche shielding effects by the hydroxyl substituents on C-3, C-18 and C-19 and hence provides a useful means of locating hydroxyl groups at these centres in new compounds. The effects of a C-3 and a C-18 hydroxyl group on C-19 are approximately additive. A hydroxyl group at C-7 also shows a γ -gauche shielding effect at C-5. An interesting contrast exists between the effect of an 18-hydroxyl and a 19-hydroxyl group on C-5. Only the former shows a γ -gauche effect on both C-3 and C-5 possibly reflecting the different conformations of the 18- and 19-hydroxyl groups.

A previous assignment of compound 6 (as its C-7 monoacetate) has been made independently [9]. Although our data are in general agreement, in the previous work [9] a signal at 24.3 ppm was assigned to C-2. An explanation for the difference ($\Delta\delta$ + 5.6 ppm) from

ent-kaur-16-ene was proposed in terms of a conformational distortion of ring A. In our series we have assigned a signal at 18.0 ppm to C-2 (when there is no C-3 oxygen function) and hence there is no need to invoke a special conformational argument. A possible source of confusion is that these signals overlap with those for C-6 (24.3 ppm) or C-11 (17.7 ppm).

We conclude that ¹³C NMR spectroscopy may assist in determining the stereochemistry at C-4 in these diterpenoids provided the shielding (or deshielding) effects of other neighbouring hydroxyl groups are also taken into account.

EXPERIMENTAL

The ¹³C NMR spectra were determined at 20 or 25.15 MHz with CDCl₃ solns, except where stated. The isolation of the samples has been described previously [3-5, 7].

REFERENCES

- Hanson, J. R., Siverns, M., Piozzi, F. and Savona, G. (1976) J. Chem. Soc. Perkin Trans. 1, 114.
- Wehrli, F. W. and Nishida, T. (1979) Fortschr. Chem. Org. Naturst. 36, 1.
- Gonzalez, A. G., Fraga, B. M., Hernandez, M. G. and Luis, G. J. (1973) Phytochemistry 12, 2721.
 Carrascal M. I. Rabanal R. M. Marquez C. and Valverde S.
- Carrascal, M. I., Rabanal, R. M., Marquez, C. and Valverde, S. (1978) An. Quim. 74, 1547.
- Piozzi, F., Venturella, P., Bellino, A., Paternostro, M. P., Valverde, S. and Rodriguez, B. (1971) Chem. Ind. (London) 962.
- Gaudemer, A., Polonsky, J. and Wenkert, E. (1964) Bull. Soc. Chim. Fr. 407.
- 7. Fraga, B. M., Hanson, J. R. and Hernandez, M. G. (1978) Phytochemistry 17, 812.
- 8. Crews, P. and Kho-Wiseman, E. (1978) Tetrahedron Letters 2483.
- Lopez-Gomez, M. A., Marquez, C., Rabanal, R. M. and Valverde, S. (1979) An. Quim. 75, 911.